### Tools and Resources for Task Scheduling Research

#### Oliver Sinnen



Department of Electrical and Computer Engineering University of Auckland, New Zealand

### Parallel computing scheduling

Scheduling task graphs with communication delays on homogeneous

processors



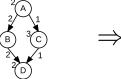




### Parallel computing scheduling

Scheduling task graphs with communication delays on homogeneous

processors





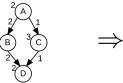
 $P|prec, c_{ij}|C_{max}$ 

- Strong NP-hard
- ⇒ Heuristics, most popular is list scheduling

# Parallel computing scheduling

Scheduling task graphs with communication delays on homogeneous

processors





 $P|prec, c_{ij}|C_{max}$ 

- Strong NP-hard
- ⇒ Heuristics, most popular is list scheduling

Here: Finding optimal solutions nevertheless ©

- For small to mid sized instances
- Important for time critical systems
- Evaluation of heuristics
- Increasing our knowledge about optimal scheduling solvers

#### Content

- Scheduling problem
- Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

#### Content

- Scheduling problem
- Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

### Scheduling problem

Finding start time and processor allocation for every task



- $t_i$  : start time of task i
- p<sub>i</sub>: processor of task i

Given by task graph G = (V, E)

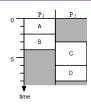
- $L_i$ : execution time of task i
  - weight of node
- ullet  $\gamma_{ij}$  : remote communication cost between tasks i and j
  - weight of edge



#### Constraints





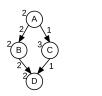


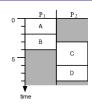
#### Processor constraint

$$p_i = p_j \Rightarrow \begin{cases} t_i + L_i \le t_j \\ \text{or} \quad t_j + L_j \le t_i \end{cases}$$



#### Constraints





#### Processor constraint

$$p_i = p_j \Rightarrow \begin{cases} t_i + L_i \leq t_j \\ \text{or} \quad t_j + L_j \leq t_i \end{cases}$$

#### Precedence constraint

For each edge  $e_{ij}$  of E

$$t_j \ge t_i + L_i + \begin{cases} 0 & \text{if } p_i = p_j \\ \gamma_{ij} & \text{otherwise} \end{cases}$$



#### Content

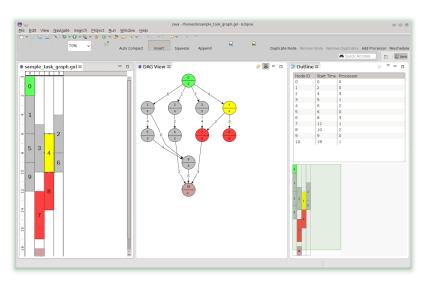
- Scheduling problem
- Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

#### Motivation

#### Why a visual scheduling tool?

- Understanding more about nature of schedules
- Finding patterns
- Manually experiment
- Behaviour for certain graph types

### Task Scheduling Eclipse Plugin



http://www.ece.auckland.ac.nz/~parallel/plugins/TaskScheduleEclipsePlugin/

Load/store task schedules (gxl format)

- Load/store task schedules (gxl format)
- Visualise schedules

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences
- Built-in list scheduler, interface for external schedulers

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences
- Built-in list scheduler, interface for external schedulers
- Node duplication

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences
- Built-in list scheduler, interface for external schedulers
- Node duplication
- One-port model (currently no manipulation)

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences
- Built-in list scheduler, interface for external schedulers
- Node duplication
- One-port model (currently no manipulation)
- Manual schedule support, insertion, append, squeeze

- Load/store task schedules (gxl format)
- Visualise schedules
- Visualise task graphs/DAGs
- Visual relation between schedule and task graph, dependences
- Built-in list scheduler, interface for external schedulers
- Node duplication
- One-port model (currently no manipulation)
- Manual schedule support, insertion, append, squeeze
- Export of schedules to svg and eps



#### Content

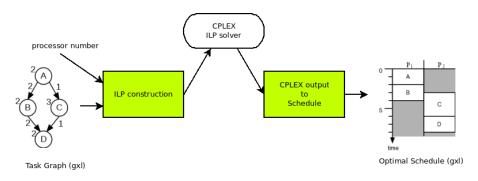
- Scheduling problem
- 2 Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

#### Content

- Scheduling problem
- 2 Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

#### Green Banana

• MILP solver for  $P|prec, c_{ij}|C_{max}$ 



 $\bullet \ \mathsf{At} \ \mathsf{http://www.ece.auckland.ac.nz/}^{\sim} \mathsf{parallel/OptimalTaskScheduling/} \\$ 

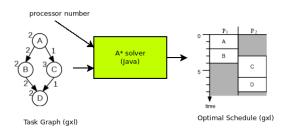
### Principle ILP variant

#### Content

- Scheduling problem
- Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

#### A\* solver

• A\* solver for  $P|prec, c_{ij}|C_{max}$ 



 Soon at http://www.ece.auckland.ac.nz/~parallel/OptimalTaskScheduling/

• Exhaustive search through all possible solutions

- Exhaustive search through all possible solutions
- State space
  - Every state (node) s represents partial solution
  - Combinatorial problems ⇒ search tree
  - Deeper nodes are more complete solutions

- Exhaustive search through all possible solutions
- State space
  - Every state (node) s represents partial solution
  - Combinatorial problems ⇒ search tree
  - Deeper nodes are more complete solutions
- Best first search
  - Next node to consider has best cost function f(s)
  - Cost f(s) must be underestimate to find optimal solution

- Exhaustive search through all possible solutions
- State space
  - Every state (node) s represents partial solution
  - Combinatorial problems ⇒ search tree
  - Deeper nodes are more complete solutions
- Best first search
  - Next node to consider has best cost function f(s)
  - Cost f(s) must be underestimate to find optimal solution
- Property: with same given cost estimate function, A\* explores least number of states

### Task scheduling with A\*

Essentially: list scheduling, trying out all task orders and all processor allocations

- State: partial schedule
- Initial state: empty schedule
- Cost function f(s): underestimate of makespan for complete schedule based on s

### Task scheduling with A\*

Essentially: list scheduling, trying out all task orders and all processor allocations

- State: partial schedule
- Initial state: empty schedule
- Cost function f(s): underestimate of makespan for complete schedule based on s

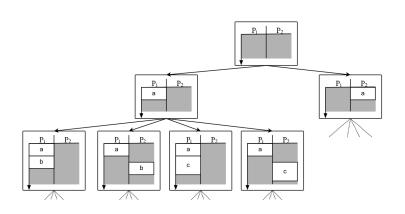
#### Expansion

• Given state s, let free(s) be free tasks

```
for all n \in \text{free}(s) do for all P \in P do
```

Create new state: n scheduled on P as early as possible

### State tree example



# Cost function f(s)

Several components, two examples

• Perfect load balance plus current idle time

$$f_{idle-time}(s) = \frac{\sum_{i \in V} L_i + idle(s)}{|P|}$$

# Cost function f(s)

Several components, two examples

Perfect load balance plus current idle time

$$f_{idle-time}(s) = \frac{\sum_{i \in V} L_i + idle(s)}{|P|}$$

Max (start time of scheduled tasks plus their bottom level)

$$f_{bl}(s) = \max_{i \in s} \{t_i + bl_w(i)\}$$

# Cost function f(s)

Several components, two examples

Perfect load balance plus current idle time

$$f_{idle-time}(s) = \frac{\sum_{i \in V} L_i + idle(s)}{|P|}$$

Max (start time of scheduled tasks plus their bottom level)

$$f_{bl}(s) = \max_{i \in s} \{t_i + bl_w(i)\}$$

Complete f(s) function:

$$f(s) = \max\{f_{idle-time}(s), f_{bl}(s), \dots\}$$

## Pruning

- Pruning is crucial
  - Even with good cost functions f(s)

### Basic techniques

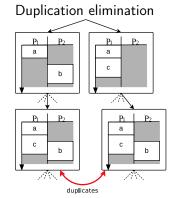
- Processor normalisation
- Node equivalence
- Duplicate elimination

## Pruning

- Pruning is crucial
  - Even with good cost functions f(s)

### Basic techniques

- Processor normalisation
- Node equivalence
- Duplicate elimination



#### Task order observations

- For certain graph structures, task order does not matter
  - Independent tasks

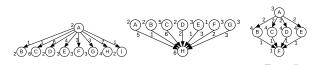


#### Task order observations

- For certain graph structures, task order does not matter
  - Independent tasks



- For other structures, optimal order can be computed
  - Fork: order tasks by non-decreasing incoming communication
  - Join: order tasks by non-increasing outgoing communication
  - ⇒ leads to optimal orders
    - Fork-join: there is no easy optimal order
      - But, in some cases tasks can be fork-order and join-order at once ⇒ optimal



#### Fixed task order

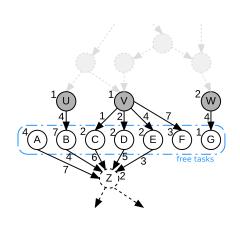
#### Generalisation for pruning

- Fix order of free tasks
  - Use fork-order, join-order
- For certain sub-structures
  - independent, fork, join, fork-join
- Only consider one task for expansion
  - Reduces branching factor to |P| instead  $free(s) \cdot |P|$

#### Fixed task order

#### Generalisation for pruning

- Fix order of free tasks
  - Use fork-order, join-order
- For certain sub-structures
  - independent, fork, join, fork-join
- Only consider one task for expansion
  - Reduces branching factor to |P| instead  $free(s) \cdot |P|$



### Content

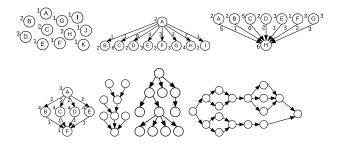
- Scheduling problem
- Visual scheduling tool
- Optimal solvers
  - ILP solver
  - A\* solver
- Solution database

## Optimal scheduling solutions database

- Large set of task graphs
- Optimal schedules of these graphs on different number of processors

## Task Graphs

Graph structures



- Also: pipeline, stencil and random
- Sizes: up to 30 tasks (currently)
- Communication-to-computation ratio (CCR): 0.1, 1.0, 2.0, 10.0.

## Optimal Schedules

Graphs scheduled on different number of processors 2-16 processors Information stored:

- Number of processors
- Detailed schedule (in gxl format)
- Schedule length
- How obtained

### Optimal Schedules

Graphs scheduled on different number of processors 2-16 processors Information stored:

- Number of processors
- Detailed schedule (in gxl format)
- Schedule length
- How obtained

Currently some hundred schedules at

 $http://www.ece.auckland.ac.nz/^{\sim}parallel/OptimalTaskScheduling/$ 

## Summary

### Tools and resources for $P|prec, c_{ij}|C_{max}$

- Visual scheduling tool
- Optimal solvers
  - Green banana (ILP solver)
  - A\* scheduling
- Solution database of optimal schedules

http://www.ece.auckland.ac.nz/~parallel/OptimalTaskScheduling/